IPython-nGQL, Nebula Graph 的 Jupyter 插件
Nebula Graph 的 Jupyter Notebook 和 IPython 插件,方便在 Notebook 之中嵌入 nGQL 的 query 和 结果的调试。
ipython-ngql
is a python package to extend the ability to connect Nebula Graph from your Jupyter Notebook or iPython. It’s easier for data scientists to create, debug and share reusable and all-in-one Jupyter Notebooks with Nebula Graph interaction embedded.
ipython-ngql
is inspired by ipython-sql created by Catherine Devlin
1 Get Started
1.1 Installation
ipython-ngql
could be installed either via pip or from this git repo itself.
Install via pip
pip install ipython-ngql
Install inside the repo
git clone [email protected]:wey-gu/ipython-ngql.git
cd ipython-ngql
python setup.py install
1.2 Load it in Jupyter Notebook or iPython
%load_ext ngql
1.3 Connect to Nebula Graph
Arguments as below are needed to connect a Nebula Graph DB instance:
Argument | Description |
---|---|
--address or -addr |
IP address of the Nebula Graph Instance |
--port or -P |
Port number of the Nebula Graph Instance |
--user or -u |
User name |
--password or -p |
Password |
Below is an exmple on connecting to 127.0.0.1:9669
with username: “user” and password: “password”.
%ngql --address 127.0.0.1 --port 9669 --user user --password password
1.4 Make Queries
Now two kind of iPtython Magics are supported:
Option 1: The one line stype with %ngql
:
%ngql GO FROM "Tom" OVER owns_pokemon YIELD owns_pokemon._dst as pokemon_id;
Option 2: The multiple lines stype with %%ngql
%%ngql
USE pokemon_club;
SHOW TAGS;
SHOW HOSTS;
There will be other options in future, i.e. from a
.ngql
file.
1.5 Query String with Variables
ipython-ngql
supports taking variables from the local namespace, with the help of Jinja2 template framework, it’s supported to have queries like the below example.
The actual query string should be GO FROM "Sue" OVER owns_pokemon ...
, and "{{ trainer }}"
was renderred as "Sue"
by consuming the local variable trainer
:
In [8]: trainer = "Sue"
In [9]: %%ngql
...: GO FROM "{{ trainer }}" OVER owns_pokemon YIELD owns_pokemon._dst as pokemon_id | GO FROM $-.pokemon_id OVER owns_pokemon REVERSELY YIELD owns_pokemon._dst AS Trainer_Name;
...:
Out[9]:
Trainer_Name
0 Jerry
1 Sue
2 Tom
3 Wey
1.6 Configure ngql_result_style
By default, ipython-ngql
will use pandas dataframe as output style to enable more human readable output, while it’s supported to use the raw thrift data format comes from the nebula2-python
itself.
This can be done ad-hoc with below one line:
%config IPythonNGQL.ngql_result_style="raw"
After above line being executed, the output will be like:
ResultSet(ExecutionResponse(
error_code=0,
latency_in_us=2844,
data=DataSet(
column_names=[b'Trainer_Name'],
rows=[Row(
values=[Value(
sVal=b'Tom')]),
Row(
values=[Value(
sVal=b'Jerry')]),
Row(
values=[Value(
sVal=b'Sue')]),
Row(
values=[Value(
sVal=b'Tom')]),
Row(
values=[Value(
sVal=b'Wey')])]),
space_name=b'pokemon_club'))
The result are always stored in variable _
in Jupyter Notebook, thus, to tweak the result, just refer a new var to it like:
In [10]: %config IPythonNGQL.ngql_result_style="raw"
In [11]: %%ngql USE pokemon_club;
...: GO FROM "Tom" OVER owns_pokemon YIELD owns_pokemon._dst as pokemon_id
...: | GO FROM $-.pokemon_id OVER owns_pokemon REVERSELY YIELD owns_pokemon._dst AS Trainer_Name;
...:
...:
Out[11]:
ResultSet(ExecutionResponse(
error_code=0,
latency_in_us=3270,
data=DataSet(
column_names=[b'Trainer_Name'],
rows=[Row(
values=[Value(
sVal=b'Tom')]),
Row(
values=[Value(
sVal=b'Jerry')]),
Row(
values=[Value(
sVal=b'Sue')]),
Row(
values=[Value(
sVal=b'Tom')]),
Row(
values=[Value(
sVal=b'Wey')])]),
space_name=b'pokemon_club'))
In [12]: r = _
In [13]: r.column_values(key='Trainer_Name')[0]._value.value
Out[13]: b'Tom'
1.7 Get Help
Don’t remember anything or even relying on the cheatsheet here, oen takeaway for you: the help!
In [7]: %ngql help
Supported Configurations:
------------------------
> How to config ngql_result_style in "raw", "pandas"
%config IPythonNGQL.ngql_result_style="raw"
%config IPythonNGQL.ngql_result_style="pandas"
> How to config ngql_verbose in True, False
%config IPythonNGQL.ngql_verbose=True
> How to config max_connection_pool_size
%config IPythonNGQL.max_connection_pool_size=10
Quick Start:
-----------
> Connect to Neubla Graph
%ngql --address 127.0.0.1 --port 9669 --user user --password password
> Use Space
%ngql USE nba
> Query
%ngql SHOW TAGS;
> Multile Queries
%%ngql
SHOW TAGS;
SHOW HOSTS;
Reload ngql Magic
%reload_ext ngql
> Variables in query, we are using Jinja2 here
name = "nba"
%ngql USE "{{ name }}"
1.8 Examples
1.8.1 Jupyter Notebook
Please refer here:https://github.com/wey-gu/ipython-ngql/blob/main/examples/get_started.ipynb
1.8.2 iPython
venv ❯ ipython
In [1]: %load_ext ngql
In [2]: %ngql --address 127.0.0.1 --port 9669 --user user --password password
Connection Pool Created
Out[2]:
Name
0 pokemon_club
In [3]: %ngql GO FROM "Tom" OVER owns_pokemon YIELD owns_pokemon._dst as pokemon_id | GO FROM $-.pokemon_id OVER owns_pokemon REVERSELY YIELD owns_pokemon._dst AS Trainer_Name
Out[3]:
Trainer_Name
0 Tom
1 Jerry
2 Sue
3 Tom
4 Wey
In [4]: %%ngql
...: SHOW TAGS;
...: SHOW HOSTS;
...:
...:
Out[4]:
Host Port Status Leader count Leader distribution Partition distribution
0 storaged0 9779.0 ONLINE 0 No valid partition No valid partition
1 storaged1 9779.0 ONLINE 1 pokemon_club:1 pokemon_club:1
2 storaged2 9779.0 ONLINE 0 No valid partition No valid partition
3 Total NaN None 1 pokemon_club:1 pokemon_club:1
In [5]: trainer = "Sue"
In [6]: %%ngql
...: GO FROM "{{ trainer }}" OVER owns_pokemon YIELD owns_pokemon._dst as pokemon_id | GO FROM $-.pokemon_id OVER owns_pokemon REVERSELY YIELD owns_pokemon._dst AS Trainer_Name;
...:
Out[6]:
Trainer_Name
0 Jerry
1 Sue
2 Tom
3 Wey
In [7]: %ngql help
Supported Configurations:
------------------------
> How to config ngql_result_style in "raw", "pandas"
%config IPythonNGQL.ngql_result_style="raw"
%config IPythonNGQL.ngql_result_style="pandas"
> How to config ngql_verbose in True, False
%config IPythonNGQL.ngql_verbose=True
> How to config max_connection_pool_size
%config IPythonNGQL.max_connection_pool_size=10
Quick Start:
-----------
> Connect to Neubla Graph
%ngql --address 127.0.0.1 --port 9669 --user user --password password
> Use Space
%ngql USE nba
> Query
%ngql SHOW TAGS;
> Multile Queries
%%ngql
SHOW TAGS;
SHOW HOSTS;
Reload ngql Magic
%reload_ext ngql
> Variables in query, we are using Jinja2 here
name = "nba"
%ngql USE "{{ name }}"
In [8]: trainer = "Sue"
In [9]: %%ngql
...: GO FROM "{{ trainer }}" OVER owns_pokemon YIELD owns_pokemon._dst as pokemon_id | GO FROM $-.pokemon_id OVER owns_pokemon REVERSELY YIELD owns_pokemon._dst AS Trainer_Name;
...:
...:
Out[9]:
Trainer_Name
0 Jerry
1 Sue
2 Tom
3 Wey
In [10]: %config IPythonNGQL.ngql_result_style="raw"
In [11]: %%ngql USE pokemon_club;
...: GO FROM "Tom" OVER owns_pokemon YIELD owns_pokemon._dst as pokemon_id
...: | GO FROM $-.pokemon_id OVER owns_pokemon REVERSELY YIELD owns_pokemon._dst AS Trainer_Name;
...:
...:
Out[11]:
ResultSet(ExecutionResponse(
error_code=0,
latency_in_us=3270,
data=DataSet(
column_names=[b'Trainer_Name'],
rows=[Row(
values=[Value(
sVal=b'Tom')]),
Row(
values=[Value(
sVal=b'Jerry')]),
Row(
values=[Value(
sVal=b'Sue')]),
Row(
values=[Value(
sVal=b'Tom')]),
Row(
values=[Value(
sVal=b'Wey')])]),
space_name=b'pokemon_club'))
In [12]: r = _
In [13]: r.column_values(key='Trainer_Name')[0]._value.value
Out[13]: b'Tom'